
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 94 (2014) 421–433
0165-16
http://d

n Corr
E-m

cfiguera
oscar.ba
joseluis
manel@
alicia.gu
antonio
journal homepage: www.elsevier.com/locate/sigpro
Spectrally adapted Mercer kernels for support vector
nonuniform interpolation

Carlos Figuera a,n, Óscar Barquero-Pérez a, José Luis Rojo-Álvarez a,
Manel Martínez-Ramón b, Alicia Guerrero-Curieses a, Antonio J. Caamaño a

a Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Co del Molino S/N, 28943 Fuenlabrada, Madrid, Spain
b Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, 87101, USA
a r t i c l e i n f o

Article history:
Received 17 December 2012
Received in revised form
21 May 2013
Accepted 12 July 2013
Available online 20 July 2013

Keywords:
Autocorrelation kernel
Mercer kernel
Support vector regression
Nonuniform interpolation
84/$ - see front matter & 2013 Elsevier B.V.
x.doi.org/10.1016/j.sigpro.2013.07.010

esponding author. Tel.: +34 91 488 84 06; fa
ail addresses: carlos.figuera@urjc.es,
@gmail.com (C. Figuera),
rquero@urjc.es (Ó. Barquero-Pérez),
.rojo@urjc.es (J.L. Rojo-Álvarez),
tsc.uc3m.es (M. Martínez-Ramón),
errero@urjc.es (A. Guerrero-Curieses),
.caamano@urjc.es (A.J. Caamaño).
a b s t r a c t

Interpolation of nonuniformly sampled signals in the presence of noise is a widely analyzed
problem in signal processing applications. Interpolators based on Support Vector Machines
(SVM) with Gaussian and sinc Mercer kernels have been previously proposed, obtaining
good performance in terms of regularization and sparseness. In this paper, inspired in the
classical spectral interpretation of the Wiener filter, we explore the impact of adapting
the spectrum of the SVM kernel to that of the observed signal. We provide a theoretical
foundation for this approach based on a continuous-time equivalent system for interpola-
tion. We study several kernels with different degrees of spectral adaptation to band-pass
signals, namely, modulated kernels and autocorrelation kernels. The proposed algorithms
are evaluated with extensive simulations with synthetic signals and an application example
with real data. Our approach is compared with SVM with Gaussian and sinc kernels and
with other well known interpolators. The SVM with autocorrelation kernel provides the
highest performance in terms of signal to error ratio in several scenarios. We conclude that
the estimated (or actual if known) autocorrelation of the observed sequence can be
straightforwardly used as a spectrally adapted kernel, outperforming the classic SVM with
low pass kernels for nonuniform interpolation.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Shannon's work on uniform sampling [1,2] states that a
noise-free, band-limited, uniformly sampled continuous-
time signal can be perfectly recovered whenever the
sampling rate is larger than or equal to twice the signal
bandwidth. These initial results have been extended both
in theoretical studies [3–6] and in practical applications
All rights reserved.

x: +34 91 488 75 00.
[7–9]. However, the interpolation problem when these
assumptions are not met becomes a very hard one, and
many approaches have been proposed by extending Shan-
non's original idea.

A seminal work in this setting was Yen's algorithm [11].
In that work an expression for the uniquely defined inter-
polator of a nonuniformly sampled band-limited signal is
computed by minimizing the energy of the reconstructed
signal. The solution is given as the weighted sum of sinc
kernels with the same bandwidth as the signal. This algo-
rithm suffers from ill posing due to the degrees of freedom of
the solution [8]. This limitation is alleviated with the inclu-
sion of a regularization term [12]. Other interpolation algo-
rithms using the sinc kernel have been proposed [8,13,14],
in which the sinc weights are obtained according to the
minimization of the maximum error on the observed data.
These algorithms, which use the sinc kernel as their basic
interpolation function, implicitly assume a band-limited signal
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to be interpolated. For non-band-limited signals, other algo-
rithms have considered a non-band-limited kernel, such as
the Gaussian kernel [5]. Finally, very efficient methods have
been recently developed to reduce the computational com-
plexity of the interpolator, for example by using filter banks
[15,16], or a modified weighted version of the Lagrange
interpolator [17] (see also references therein). It is interesting
to note that the well-known Wiener filter has received less
attention than the use of Gaussian or sinc kernel expansions
for nonuniform-sampled signal interpolation problems [10].

On a different theoretical framework, Support Vector
Machines (SVM) have been proposed in recent years as
learning-from-samples tools for a number of problems,
including classification and regression [18], and in many
practical applications [19]. SVM algorithms have been
recently proposed for nonuniform-sampled signal inter-
polation [20], using sinc and Gaussian kernels, and show-
ing good performance for low-pass signals in terms of
robustness, sparseness, and regularization capabilities. SVM
algorithms have to be formulated in terms of Mercer kernels,
and a well-known theoretical result is that any autocorrela-
tion function is a valid Mercer kernel [22]. However, the
suitability of using the autocorrelation of the observed
process as the SVM kernel for interpolation problems has
not been analyzed so far. Moreover, no previous analysis can
be found on the SVM kernel choice which takes into account
the spectral adaptation between the observed signal, the
kernel itself, and the Lagrange multipliers yielded by
the model.

In this work, we propose the use of SVM algorithms to
solve the nonuniform sampling interpolation problem
by exploring several Mercer kernels that are spectrally
adapted to the signal to be interpolated. To accomplish this
task, we first analyze the relationship between the Wiener
filter and the SVM algorithm for this problem, using the
spectral interpretation of both algorithms. Then, according
to this analysis, we examine different SVM interpolation
kernels accounting for different degrees of spectral adap-
tation and performance, namely, band-pass kernels, esti-
mated signal autocorrelation kernels, and actual signal
autocorrelation kernels. A preliminary version of this work
has been presented in [23].

The paper is organized as follows. Section 2 reviews
several interpolation algorithms, including the Wiener
filter, the Yen algorithm, and the SVM interpolator, and
summarizes their well-known spectral interpretation. In
Section 3, a continuous time equivalent model for the SVM
interpolation allows us to propose a list of kernels for SVM
interpolation with different degrees of spectral adaptation.
Section 4 includes a set of experiments evaluating the
importance of this spectral adaptation, and comparing
the performance of several interpolation algorithms and
their robustness with non-Gaussian noise and nonuniform
sampling in synthetic data and in an application example.
Section 5 provides a concluding summary.

2. Algorithms for nonuniform interpolation

In this section, we first briefly introduce notation and
define the problem to be solved. Second, three nonuniform
interpolation algorithms, namely, Wiener filter [10], Yen
regularized interpolator [11,12], and SVM interpolator [20]
are described. Although much more interpolation methods
have already been proposed in the literature, we limit
ourselves to these three cases for two reasons: (i) they are
representative cases of optimal algorithms (with a differ-
ent optimality concept for each case), and (ii) they have a
straightforward spectral interpretation, which allows an
interesting comparison with the algorithms proposed in
this work.

Let x(t) be a continuous-time signal with finite-energy,
consisting of a possibly band-limited signal z(t), which can
be seen as a realization of a random process, corrupted
with additive noise w(t), i.e. xðtÞ ¼ zðtÞ þwðtÞ, where the
noise is modeled as a zero-mean Wide Sense Stationary
(WSS) process. This signal has been observed on a set of N
unevenly spaced time instants, ftn; n¼ 1;…;Ng, obtaining
the set of observations x¼ ½xðt1Þ;…; xðtnÞ;…; xðtNÞ�T .

Then, the nonuniform interpolation problem consists in
finding a continuous-time signal ẑðtÞ that approximates
the noise-free interpolated signal in a set of K time
instants, ft′k; k¼ 1;…;Kg.

2.1. Wiener filter for nonuniform interpolation

Time domain analysis: As described in [10], a Bayesian
approach to solve this problem amounts to the Wiener
filter [24]. Assuming that z(t) is zero mean, the linear
estimator is given by

ẑðt′kÞ ¼ aT
kx for k¼ 1;…;K ð1Þ

The scalar Linear Minimum Mean Square Error (LMMSE)
estimator is obtained when ak is chosen to minimize the
MSE and takes the following form [10]:

ẑðt′kÞ ¼ rTzkC
�1
xx x for k¼ 1;…;K ð2Þ

Vector rzk contains the cross covariance values between
the observed signal and the signal interpolated at time t′k,
that is rzk ¼ ½rzzðt′k�t1Þ;…; rzzðt′k�tNÞ�T , where rzzðτÞ is the
autocorrelation of the noise-free signal for a time shift τ.
Cxx is the covariance matrix of the observations and,
assuming WSS data with zero mean, it is computed as
Cxx ¼ Rzz þ Rww, where Rzz is the autocovariance matrix of
the signal with components i; j given by Rzzði; jÞ ¼ rzzðti�tjÞ,
and Rww is the noise covariance matrix. For the i.i.d. case,
Rww ¼ s2wIN , with s2w the noise power and IN the identity
matrix of size N�N. Thus, ẑðt′kÞ is given by

ẑðt′kÞ ¼ ½ðRzz þ s2wINÞ�1rzk �Tx ð3Þ
Although the solution in (3) is optimal in the MSE

sense, two main drawbacks can arise when using it for
practical applications: (1) it implies the inversion of a
matrix that, specially for high Signal to Noise Ratio (SNR),
can be almost singular, so the problem can become
numerically ill-posed; and (2) the knowledge of the auto-
correlation of the signal rzzðτÞ at every τ¼ ti�tj is needed,
so it must be estimated from the observed samples if it is
not known.

Frequency domain analysis: The solution of the LMMSE
estimator given by (2) can be seen as the convolu-
tion of the observations with a filter with impulse response
hðkÞW ½n� ¼ a½k�n�. For a finite number of nonuniform samples,
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the solution cannot be converted into a time-invariant filter
since it depends on k index, which is a significant different
with the uniform-sampling case. However, in order to
provide a simple spectral interpretation of the interpolator
we assume that N-1 and then (3) can be approximated as
the convolution of the observations with a time-invariant
filter with response hW ½n�, which does not depend on the
time index k [10],

ẑðt′kÞ ¼ ∑
1

n ¼ �1
hW ½n�xðtk�tnÞ ð4Þ

In this case, the coefficients of the filter hW ½n� can be
computed using the Wiener–Hopf equations [24]. By apply-
ing the Fourier transform to these equations, the transfer
function of the filter is finally obtained:

HW fð Þ ¼ Pzzðf Þ
Pzzðf Þ þ Pwwðf Þ

¼ ηðf Þ
ηðf Þ þ 1

ð5Þ

where Pzz(f) and Pww(f) are the Power Spectral Density (PSD)
of the original signal and the noise respectively, and η¼
Pzzðf Þ=Pwwðf Þ represents the local Signal to Noise Ratio (SNR)
in a frequency f. Obviously, 0oHW ðf Þo1, tending to 1 (to 0)
in spectral bands with high (low) SNR. Hence, the Wiener
filter enhances (attenuates) the signal in those bands with
high (low) SNR, and the autocorrelation of the process to be
interpolated is a natural indicator of the relevance of each
spectral band in terms of SNR.

2.2. Yen regularized interpolator

Time domain analysis: Inspired by Shannon's sampling
theorem, a priori information can be used for band-limited
signal interpolation by means of a sinc kernel. In this case,
the signal is modeled with a sinc kernel expansion as

xðt′kÞ ¼ zðt′kÞ þwðt′kÞ ¼ aTsk þwðt′kÞ for k¼ 1;…;K ð6Þ
with sk an N � 1 column vector with components sk½n� ¼
sincðs0ðt′k�tnÞÞ, where sincðtÞ ¼ sin ðtÞ=t and parameter
s0 ¼ π=T0 is the sinc function bandwidth. Then, the inter-
polator can be stated as follows:

ẑðt′kÞ ¼ aTsk for k¼ 1;…;K ð7Þ
When Least Squares (LS) strategy is used to estimate a,
Yen's solution [11, Theorem IV] is obtained. If a regulariza-
tion term is used to prevent numerical ill-posing, a is
obtained by minimizing

Lreg ¼
1
2
∥x�Sa∥2 þ δ

2
∥a∥2 ð8Þ

where S is a square matrix with elements Sðn; kÞ ¼ sinc
ðs0 ðtn�t′kÞÞ, and δ tunes the trade-off between solution
smoothness and the errors in the observed data. In this
case, a is given by

a¼ ðS2 þ δINÞ�1Sx ð9Þ
The use of the regularization term leads to solutions that
are suboptimal in the MSE sense.

Frequency domain analysis: An asymptotic analysis similar
to the one presented for the Wiener filter can be done based
on (9) and (7). Using a continuous time equivalent model for
the interpolation algorithm (see Section 3 for further details)
the interpolation algorithm can be interpreted as a filtering
process over the input signal, this is

ẑðtÞ ¼ hY ðtÞnxðtÞ ð10Þ
where n denotes the convolution operator. Now, the transfer
function of the filter is given by

HY fð Þ ¼ Pssðf Þ
Pssðf Þ þ δ

ð11Þ

where Pss(f) is the PSD of sincðs0tÞ (since this one is
deterministic, Pssðf Þ≡jSðf Þj2 with S(f) the Fourier transform
of the sinc function), which is a rectangular pulse of width s0.
HY(f) takes the value 1=ð1þ δÞ inside the passband of Pss(f)
and 0 outside. Therefore, if s0 is equal to the signal band-
width, the filter attenuates the noise outside the signal
band and does not affect the components inside the band.
A comparison between (11) and (5) reveals that both
interpolators can be interpreted as filters in the frequency
domain, but in the case of Yen's algorithm the local SNR ηðf Þ
is approximated by the sinc kernel PSD, Pss(f).

2.3. SVM interpolation

An alternative to the use of LS criterion in nonuniform
interpolation is the SVM approach [25]. We next summar-
ize the procedure presented in [20], in order to use the
most relevant results in the next section.

Let us assume a nonuniform interpolator of the form

ẑðt′kÞ ¼ aTφðt′kÞ ð12Þ
where a is an N � 1 weight vector which defines the
solution and φðt′kÞ is a nonlinear transformation of the
time instants to a Hilbert space H, provided with a dot
product

φðt1ÞTφðt2Þ ¼ Kðt1; t2Þ ð13Þ
with Kð�; �Þ being a kernel that satisfies Mercer's Theorem
[18]. The solution of the SVM is stated in terms of dot
products of the transformed input samples. Hence, (13)
indicates that the nonlinear transformation in (12) will be
done implicitly by means of a kernel function.

In order to construct the interpolator, vector a must
be found. For this purpose, following the structural risk
minimization principle, a cost function on the errors in the
sampling instants plus a regularization term should be
minimized [18]. In this work, a ε-Huber cost [26] function
is used:

LεH enð Þ ¼

0; jenjoε
1
2γ

ðjenj�εÞ2; ε≤jenjoεþ γC

Cðjen �εj Þ�1
2
γC2; jenj≥εþ γC

8>>>>><
>>>>>:

ð14Þ

where en ¼ xðtnÞ�ẑðtnÞ, and ε, γ and C are free parameters to
be adjusted using a priori knowledge (see [21] for further
details). Using this cost function, the primal functional to be
optimized in order to obtain a is

Lp ¼
1
2
∥a∥2 þ 1

2γ
∑
n∈I1

ξ2n þ ξn2n
� �þ C ∑

n∈I2

ξn þ ξnn
� �� ∑

n∈I2

γC2

2
ð15Þ
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subject to the constraints

xn�aTφðtnÞ≤εþ ξn

�xn þ aTφðtnÞ≤εþ ξnn ð16Þ

where ξðnÞn ¼maxf0; jenj�εg are the error magnitude outside
the insensitivity region for positive and negative errors, and
sets I1 and I2 contains the indices of errors that lie in the
quadratic and linear sections of the cost function, respec-
tively [26].

The SVM approach allows to control the estimator
smoothness through the first term of (15). Also, due to
the insensitivity region of the cost function the solution is
sparse, meaning that only a subset of the original signal
samples are used for building the solution, and hence the
computational burden of the interpolator is reduced.
Finally, the cost function approaches maximum likelihood
(ML) for Gaussian noise and is robust against non-
Gaussian interferences as impulsive noise [26].

Using the Lagrange method for solving the problem in
(15) and (16), the solution is

a¼ ∑
N

n ¼ 1
ðαn�αn

nÞφðtnÞ ¼ ∑
N

n ¼ 1
βnφðtnÞ ð17Þ

where βn ¼ αn�αn
n are the Lagrange multipliers for con-

straints in (16) [20]. Finally, by combining (12) and (17),
and expanding the scalar product into a summation, the
interpolated signal is given by

ẑðt′kÞ ¼ ∑
N

n ¼ 1
βnφðtnÞTφðt′kÞ ¼ ∑

N

n ¼ 1
βnKðtn; t′kÞ

¼ ∑
N

n ¼ 1
βnKðtn�t′kÞ: ð18Þ

where for the last equality we have assumed that the
kernel fulfills the condition Kðx; yÞ ¼ Kðx�yÞ. In that case,
the kernel can be thought as a time-invariant system
that provides a convolutional model for the solution [27].
Conversely, it is known that for a function Kð�; �Þ to be a
valid shift invariant kernel, it is a necessary and sufficient
condition that it has a nonnegative Fourier transform [28].
Fig. 1. CESNI for the SVM interpolation algorithm. The interpolated signal
ẑðtÞ is built by filtering the continuous-time sampled version of the
Lagrange coefficients βðtÞ with the SVM kernel K(t).
2.4. Some comparative remarks

It can be seen that both Yen and Wiener filter
algorithms use the LS (regularized for Yen method)
criterion. However, Wiener algorithm is linear with the
observations, and it does not assume any a priori decom-
position of the signal in terms of building functions.
Instead, it relies on the knowledge of the autocorrelation
function, which can be hard to be estimated in a number
of applications. Alternatively, Yen algorithm is nonlinear
with respect to the observations and assumes an a priori
model based on sinc kernels. Hence, the knowledge
of the signal autocorrelation is not needed. The SVM
interpolation uses a different optimization criterion,
which is the structural risk minimization, and its solu-
tion is nonlinear with respect to the observations since it
assumes a signal decomposition in terms of a given
Mercer kernel.
3. Spectrally adapted Mercer kernels

In this section, we present a Continuous-time Equivalent
System for Nonuniform Interpolation (CESNI), which repre-
sents the solution of the interpolation problem based on the
SVM approach. The objective of presenting a continuous-
time equivalent system is to establish a frequency domain
description of the interpolation SVM algorithm. Based on
the analysis of the CESNI model, several effective Mercer
kernels are proposed for SVM-based nonuniform sampling
interpolation. These kernels account for different degrees of
spectral adaptation to the observed data.

Definition 1 (CESNI). Given the SVM procedure described
in Section 2.3, we define its continuous-time equivalent
system as

ẑðtÞ ¼ T fxðtÞg ð19Þ

with xðtÞ ¼ zðtÞ þwðtÞ, ẑðtÞ the estimation of z(t), and T f�g a
continuous time nonlinear feedback system. If T f�g is
evaluated in a set of N time instants ftn; n¼ 1;…;Ng taken
from a uniform random distribution, the system defined
by the solution in Section 2.3 is obtained.

In order to define T f�g, recall that Lagrange coefficients
are related with the observed data by the derivative of the
cost function, i.e. βn ¼LεH′ðenÞ≡dLεHðenÞ=de (proof can be
found in [21]) and that en ¼ xðtnÞ�ẑðtnÞ. Using these results,
it can be seen that the solution defined in (18) can be
modeled as a feedback system, and we will define T f�g as
its continuous time version, which is represented in Fig. 1.
CESNI elements are subsequently scrutinized.

Property 1 (Residual continuous time signal). Given the
CESNI of SVM algorithm for unidimensional signal interpola-
tion, the residual continuous time signal is given by

eðtÞ ¼ xðtÞ�ẑðtÞ ð20Þ

and it corresponds to the continuous time signal from which
the residuals are sampled.

Property 2 (Model coefficient continuous-time signal). In
the CESNI of SVM algorithm for unidimensional signal inter-
polation, the Model Coefficient Continuous-time Signal is
given by the following set of equations:

βeðtÞ ¼L′εHðeðtÞÞ ð21Þ

sðtÞ ¼ ∑
N

n ¼ 1
δðtnÞ ð22Þ
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βðtÞ ¼ βeðtÞ � sðtÞ ¼ ∑
N

n ¼ 1
βnδðtnÞ ð23Þ

where βeðtÞ is the equivalent continuous signal for the
Lagrange coefficient sequence, βðtÞ is its sampled version,
and δðtÞ represents Dirac's delta function. Hence (23) repre-
sents the discrete set of the model coefficients given by
the SVM algorithm as obtained by random sampling of a
continuous time signal βeðtÞ.

Property 3 (Recovered continuous-time signal). In the
CESNI of SVM algorithm for unidimensional signal interpola-
tion, the recovered continuous-time signal is given by

ẑðtÞ ¼ KðtÞnβðtÞ ð24Þ
which shows that the kernel works as a linear, time-invariant
filter and that the Lagrange coefficients are the inputs to that
filter.

Consequently, denoting the PSD of ẑðtÞ, K(t), and βðtÞ
as PẐ ðf Þ, PKðf Þ, and PBðf Þ, respectively, the recovered signal
PSD is given by PẐ ðf Þ ¼ PKðf ÞPBðf Þ, and hence we can
conclude that the kernel is shaping the output in the
frequency domain. On the one hand, an appropriate
adaptation of the kernel spectrum to the one of the
original signal shall improve the interpolation perfor-
mance. On the other hand, if the signal and kernel spectra
are not in the same band, the performance shall be really
poor. This would be the case of the sinc or the Gaussian
kernels when used for band-pass signal interpolation. This
suggests that Mercer kernels represent the transfer func-
tion which should emphasize the recovered signal in those
bands with higher SNR. Looking at the Wiener filter
transfer function in (5) we can see that the signal auto-
correlation could be used for this purpose, since its Fourier
transform is the PSD of the signal.

Nevertheless, despite these are well known principles
of signal processing, little attention has been paid to the
possibility of using spectrally adapted Mercer kernels in
Fig. 2. Illustration of the spectral adaptation of the kernels to the observations
modulated sinc kernel, and (d) with autocorrelation kernel.
SVM-based interpolation algorithms. According to these
considerations, we now propose several Mercer kernels
with different degrees of spectral adaptation, namely,
modulated and autocorrelation kernels.

Property 4 (Modulated kernels). If z(t) is a band-pass signal
centered at f0, modulated versions of RBF and sinc kernels
given by

Kðtn; t′kÞ ¼ sincðs0ðtn�t′kÞÞ sin ð2πf 0ðtn�t′kÞÞ ð25Þ

K tn; t′kð Þ ¼ exp � ðtn�t′kÞ2
2s20

 !
sin 2πf 0 tn�t′kð Þ� � ð26Þ

are suitable Mercer kernels. Moreover, their spectra are adapted
to the signal spectrum. Note that in this case, an additional free
parameter ω0 has to be settled for the kernel.

Property 5 (Autocorrelation kernels). Similar to the Wiener
filter, the autocorrelation of the signal to be interpolated
(z(t)) or its noisy observations (xðtnÞ) can be used to define
the following kernels:

Kidealðtn; t′kÞ ¼ rzzðtn�t′kÞ ð27Þ

Kestðtn; t′kÞ ¼ rxxðtn�t′kÞ ð28Þ
which are the ideal (actual) autocorrelation function com-
puted from the underlying process and autocorrelation func-
tion estimated from the observations, respectively.

If the second order statistics of the process are known,
kernel defined in (27) can be used. When the autocorrela-
tion of the process is not known, an estimation procedure
must be used. Note that this problem is not exclusive
of the SVM interpolator, but is also present in the Wiener
case. However, as shown in the experiments, due to the
robustness of the SVM algorithm, simple procedures for
estimating the autocorrelation functions can be used.

Fig. 2 illustrates the effect of using different kernels. The
signal to be interpolated is band-pass, so its interpolation
for a band-pass signal: (a) with RBF kernel, (b) with sinc kernel, (c) with
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with low-pass kernels, either RBF (a) or sinc (b), can be a
loose spectral adaptationwhich indeed emphasizes the noise
in the low-pass band. In (c), the use of a modulated band-
pass sinc kernel allows us to enhance the transfer function
spectral adaptation to the signal spectral profile, which is
further refined in (d) when using the estimated autocorrela-
tion as interpolation kernel.
4. Experiments

In this section, the described algorithms are experimen-
tally assessed. We first analyze their performance when
interpolating a band-pass signal. Then, we evaluate the
interpolation of two signals with very different spectra, to
assess the impact of the kernel spectral adaptation. We also
test different levels of nonuniformity in the sampling pro-
cess, different numbers of training samples, and non-
Gaussian noise. In a second set of experiments, we test the
algorithms with several one-dimensional functions with
different and representative spectral profiles. Finally, the
applicability of SVM algorithms is illustrated by interpolating
a set of Heart Rate Variability (HRV) signals, which are
nonuniformly sampled time series.
4.1. Experimental setup

We benchmarked the interpolation algorithms that are
summarized in Table 1, including all the methods described
above and the functionally weighted version of the Lagrange
interpolator described in [17].

For Wien and SVM-Corr algorithms the autocorrelation
function had to be estimated from the observed samples.
Note that the autocorrelation had to be computed for every
time shift τ¼ tn�t′k, so it had to be estimated over a grid
with a resolution much higher than that of the observed
samples. Hence, two steps might be carried out: (1) estimat-
ing the autocorrelation from the observed samples and
(2) interpolating it for every time shift τ¼ tn�t′k. Although
many methods exist for this purpose, we propose to use
a simple procedure based on frequency-domain interpola-
tion. The main reason for this choice is that the overall
procedure is simple and well-established. Specifically, the
method consists of (1) a Lomb Periodogram to estimate the
PSD of the signal [29], and (2) a zero padding technique in
the frequency domain to carry out the interpolation step.
Finally, inverse Fourier transform of the zero padded PSD
was used for computing the autocorrelation function.
Table 1
List of algorithms benchmarked in the experiments.

Algorithm description Label

Yen algorithm with regularization Yen
Weighted Lagrange interpolator WLI
Wiener filter with estimated autocorrelation Wien
Wiener filter with actual (ideal) autocorrelation Wien-Id
SVM with low-pass RBF kernel SVM-RBF
SVM with low-pass sinc kernel SVM-Sinc
SVM with estimated autocorrelation kernel SVM-Corr
SVM with actual (ideal) autocorrelation kernel SVM-CorrId
For the synthetic experiments, a one-dimensional signal
with spectral information contained in ½�B=2;B=2� was
interpolated. This signal was sampled in a set of L unevenly
time instants, different for each realization, with an average
sampling interval T, such that BT¼1. The interpolation
instants lied on a uniform grid with step Tint ¼ T=F, with F
the interpolation factor. The nonuniform sampling time
instants were simulated by adding a random quantity taken
from a uniform distribution in the range ½�u;u� to the
equally spaced time instants tk ¼ kT ; k¼ 1;2;…; L. In order
to simplify the computation of the kernels, each time instant
was rounded to be a multiple of Tint. The performance of
each algorithm was measured by using the S=E indicator,
that is, the ratio between the power of the signal and the
power of the error in dB. Each experiment was repeated
50 times.

4.2. Interpolation of band-pass signals

To get a first insight of the impact of the kernel spectral
adaptation on the algorithms performance, we compared
them when interpolating a test signal consisting of a
modulated squared sinc function (MSSF), defined by

f tð Þ ¼ sinc2
π

T0
t

� �
cos 2πf 1t

� � ð29Þ

where T0 and f1 are chosen in order that the signal
bandwidth fulfills BT¼1. The spectrum of this signal is a
triangle centered at f1. The experiment was carried out
with L¼32 samples, T¼0.5 s, a nonuniformity parameter
u¼ T=10, and for Gaussian noise with different values of
SNR. Fig. 3 shows the spectra of the original and recon-
structed signals and the error of reconstruction of the Yen
and the SVM algorithms. The error at low frequencies
(where there is no significant signal power) is high for the
SVM with low-pass kernels, since in this band the noise is
enhanced by the kernel spectrum. On the contrary, it can
be seen that the error produced by the autocorrelation
kernel is quite lower, since it is adapted to the signal
spectrum.

Table 2 represents the performance of all the algo-
rithms for different SNRs. It can be observed that both
SVM-CorrId and Wien-Id methods, which are based on
the perfect knowledge of the signal autocorrelation, clearly
outperform the other algorithms. Although the solution
presented in (3) is optimal in the MSE sense, it suffers from
numerical ill-posing due to the inversion of the correla-
tion matrix, which usually presents a very high condition
number. The SVM with estimated autocorrelation kernels
also has a good performance, only 1 to 2 dB lower than the
ideal version. Note that it clearly outperforms the non-
ideal version of the Wiener filter. WLI algorithm provides
intermediate S=E values, although it computational com-
plexity is the lowest one. Finally, SVM with low pass
kernels and Yen algorithms provide a performance lower
than that of the others.

4.3. Spectral adaptation of SVM kernel

In order to investigate the importance of the spectral
adaptation of the kernel, we analyzed the performance
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Fig. 3. Example of the spectra of the original and reconstructed signals (left) and the error of the reconstructions (right) for the modulated sinc squared
function. T¼0.5 s, L¼32, SNR¼10 dB and u¼ T=10.

Table 2
Mean S=E and (std) with SNR for a band-pass signal interpolation,
T¼0.5 s, L¼32 and u¼ T=10. Two best in bold.

Alg. 40 dB 30 dB 20 dB 10 dB

Yen 35.1 (0.5) 29.3 (0.9) 20.3 (1.1) 10.4 (1.3)
Wien 39.8 (1.2) 30.0 (1.0) 20.2 (1.1) 10.1 (1.3)
WLI 38.4 (2.4) 29.4 (1.2) 20.1 (1.3) 10.0 (1.4)
Wien-Id 41.2 (1.2) 32.3 (1.4) 22.6 (1.7) 13.1 (1.8)
SVM-Corr 39.5 (1.9) 30.9 (1.4) 22.0 (1.3) 12.6 (1.6)
SVM-CorrId 41.7 (1.4) 32.9 (1.4) 23.5 (1.6) 14.9 (1.6)
SVM-RBF 27.4 (1.0) 26.1 (0.7) 19.2 (0.7) 10.8 (1.2)
SVM-Sinc 34.1 (0.7) 28.9 (1.1) 20.2 (1.1) 10.9 (1.2)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

f (Hz)

S
ig

na
ls

 a
nd

 M
od

ul
at

ed
 S

in
c 

K
er

ne
l

MSSF
DMGF
Mod. Sinc Kernel

Fig. 4. Spectrum for the MSSF, DMGF and modulated sinc kernel.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

SNR (dB)

S
/E

 (d
B

)

MSSF: SVM−CorrId
MSSF: SVM−ModSinc
DGMF: SVM−CorrId
DGMF: SVM−ModSinc

Fig. 5. S=E ratio for SVM-CorrId (solid lines) and SVM-ModSinc (dashed
lines) algorithms when interpolating MSSF (circles) and DMGF (trian-
gles). T¼0.5 s, L¼32, u¼ T=10.

C. Figuera et al. / Signal Processing 94 (2014) 421–433 427
of two SVM-based interpolators on two additional test
signals. The first signal was the MSSF described in (29),
whereas the second signal consisted of two Gaussian
functions modulated at different frequencies and added
together (labeled DMGF, from double modulated Gaussian
function) given by

f tð Þ ¼ 1
s
ffiffiffiffiffiffi
2π

p exp � t�μ

2s2

� �
f cos ð2πf 1tÞ þ cos ð2πf 2tÞg ð30Þ

with s¼ 3, f 1 ¼ 0:75 Hz and f 2 ¼ 0:25 Hz. Following the
same setup as in the previous experiments, we interpo-
lated these two functions by using two SVM algorithms,
one with the ideal autocorrelation kernel, and the other
with the modulated sinc band-pass kernel (SVM-ModSinc)
given by Eq. (25), where s0 and w0 have been chosen to
obtain the same spectrum as the one of the MSSF. In Fig. 4
the spectra of both functions and the modulated sinc
kernel are shown. It can be seen that the modulated sinc
kernel is spectrally adapted to the MSSF, but not to the
DMGF. Fig. 5 shows the S=E performance for both algo-
rithms when interpolating both functions. The modulated
sinc kernel performs well for the MSSF, since the spectrum
is similar, but the performance degrades for the DMGF.
Notably, the autocorrelation kernel is able to adapt its
spectrum to both signals, and therefore it performs well
with both of them.
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4.4. Effect of the sampling process and the noise

4.4.1. Nonuniform sampling
Now, we examine the effect of increasing the nonuni-

formity parameter u from very small values to half of the
sampling period. The sampling for u very small is almost
uniform, while with u¼ T=2 the samples can be placed at
any time instant. For this purpose, we used the MSSF and a
set of logarithmically spaced values for u, from 0.001 to
T=2, using SNR¼20dB, and with the rest of the parameters
as in Section 4.2.

Fig. 6 shows the mean and standard deviation of the
S=E for all the algorithms for each value of u. SVM-CorrId is
the most robust algorithm with respect to the nonuniform
sampling. When u takes its maximum value, the difference
between the SVM-CorrId and the rest of the algorithms is
also maximal and rises up to 5 dB. Interestingly, Wien-Id
behaves similar to SVM-CorrId for low values of u, which
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Fig. 6. S=E ratio for different values of the nonuniformity parameter (u)
SNR¼20 dB, T¼0.5 s, L¼32.

Table 3
Mean S=E and (std) with the number of samples L, for a band-pass signal
interpolation, and u¼ T=10. Two best in bold.

Alg. L¼32 L¼64 L¼128

Yen 19.6 (0.9) 19.6 (0.8) 15.7 (2.1)
Wien 19.2 (1.0) 19.6 (0.9) 19.9 (0.5)
Wien-Id 22.4 (3.4) 22.5 (2.9) 22.9 (2.3)
SVM-Corr 21.9 (1.2) 21.9 (0.9) 21.8 (0.8)
SVM-CorrId 23.3 (1.2) 23.2 (1.0) 23.4 (0.7)
SVM-RBF 19.2 (1.0) 19.0 (0.8) 18.9 (0.5)
SVM-Sinc 19.5 (1.0) 19.8 (0.7) 19.5 (0.5)

Table 4
Mean S=E and (std) with SIR (SNR¼10 dB) for a band-pass signal interpolation,

Alg. 20 dB 15 dB 10 dB

Yen 10.5 (1.3) 10.2 (1.2) 9.9 (1.1)
Wien 10.0 (1.3) 9.8 (1.2) 9.3 (1.2
Wien-Id 13.3 (1.8) 13.1 (1.8) 12.9 (1.
SVM-Corr 12.6 (1.6) 12.1 (1.3) 11.9 (1.5
SVM-CorrId 14.5 (1.8) 14.3 (1.4) 14.1 (1.6
SVM-RBF 10.6 (1.2) 10.3 (1.3) 10.1 (1.2
SVM-Sinc 11.0 (1.1) 10.7 (1.2) 10.7 (1.2
was the expected behavior since both of them use the
same prior knowledge about the second order statistics
of the signal. However, when u exceeds 10�2, the perfor-
mance of the Wiener filter degrades fast, which can be
explained by the loss of stationarity caused by the nonuni-
form sampling. The robust nature of SVM interpolation
is not affected in the same manner by this effect. Finally,
SVM-Corr algorithm shows an intermediate performance,
between SVM-CorrId and the rest of the algorithms.

4.4.2. Number of samples
In this experiment we investigated the performance of all

the algorithms for different numbers of samples, using the
same function and parameters as in the previous sections.
Note that if the function bandwidth is not changed, the
comparison would be unfair. Hence, we increased it accord-
ingly to the number of samples. Table 3 shows the results for
different lengths of the training set. Most algorithms perform
similarly for all the values of L. However, Yen algorithm has a
poorer behavior, since the numerical problems associated
with the matrix inversion become more patent.

4.4.3. Robustness against impulse noise
SVM algorithms have shown good performance when

impulse noise is present at the data [20]. We tested all the
proposed algorithms with this noise, which was generated
with the Bernoulli–Gaussian (BG) function nBG

n ¼ vnλn where
vn is a random process with Gaussian distribution and power
s2BG and where λn is a random process which takes the value
1 with probability p and the value 0 with probability 1�p.
A value of p¼0.1 was considered. In order to compare the
robustness of each algorithm when this type of noise was
present, we used the signal to impulse noise ratio (SIR)
indicator, defined by

SIRdB ¼ 10 log10
Efxn�nG

n�nBG
n g

s2BG

 !
ð31Þ

Table 4 shows the performance (in terms of S=E) of the
proposed algorithms for different values of SIR, SNR¼10 dB,
and the rest of the parameters as in Section 4.2. In this case,
due to the inherent robustness to outliers of the SVM formu-
lation, all the SVM algorithms are robust against impulse
noise, while the performance of the two Wiener filter algo-
rithms degrades for very low SIR, hence confirming the
superiority of the SVM-based solution in the case of non-
Gaussian noise. Again, SVM-CorrId provides the best results for
all SIR values, and hence shows an interesting robustness with
different types of noise.
and u¼ T=10. Two best in bold.

5 dB 0 dB �5 dB

8.7 (1.5) 6.8 (2.0) 4.5 (2.7)
) 7.9 (1.6) 5.7 (2.2) 2.9 (3.3)
7) 12.0 (1.9) 10.0 (2.3) 8.8 (3.5)
) 10.6 (1.8) 8.2 (2.7) 5.7 (3.1)
) 13.0 (2.1) 10.9 (2.3) 10.0 (2.7)
) 8.9 (1.6) 6.6 (2.0) 4.4 (2.8)
) 9.6 (1.5) 7.5 (2.1) 5.3 (2.5)



Table 5
Mean S=E and (std) for different functions (SNR¼10 dB, Gaussian noise,
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4.5. Performance for different type of signals

In this experiment we tested the performance of the
analyzed algorithms with a database of functions with
different kinds of spectrum. Fig. 7 shows the spectra of
the nine functions which have been used for this purpose.
In this case, the number of samples is L¼64, with
T ¼ 0:24 s and u¼ T=10. The noise was Gaussian with
SNR¼10 dB. Table 5 shows the mean S=E and its standard
deviation in brackets. SVM-CorrId with the ideal auto-
correlation kernel performs well in all the cases, followed
by SVM-Corr most of the times. In the case of the chirp
function, the SVM-Sinc behaves better than the SVM-Corr,
since its spectrum is similar to the one of that function.
However, the performance of this algorithm degrades for
other functions (like PST or POL). Based on these results,
we can conclude that the SVM with autocorrelation
kernels have very good performance independently of
the signal spectrum, since they are able to adapt the
kernel spectra.
and u¼ T=10). Two best in bold.

Alg. CHRP 3SIN PTR SAW FBRK POL BPSK PLST

Yen 11.1 12.5 11.2 6.7 11.6 13.3 9.3 13.2
(1.0) (0.9) (1.0) (0.5) (0.9) (1.1) (0.7) (1.1)

Wien 9.6 9.1 9.1 5.1 9.0 9.4 8.5 9.4
(1.0) (0.9) (0.9) (0.7) (0.9) (0.9) (0.9) (1.0)

Wien-Id 11.3 8.9 13.4 7.4 10.7 9.4 10.8 10.0
(1.1) (1.3) (1.0) (0.9) (1.0) (0.4) (1.1) (0.4)

SVM-Corr 11.0 13.4 12.2 7.2 11.5 16.7 11.6 15.7
(1.0) (1.3) (1.2) (0.6) (1.0) (1.4) (0.8) (1.3)

SVM-CorrId 13.0 15.2 14.1 9.1 12.9 18.7 13.4 17.5
(1.1) (1.4) (1.2) (0.9) (1.0) (1.8) (0.9) (1.4)

SVM-RBF 10.7 11.5 10.8 6.8 11.1 14.6 10.0 14.6
(0.9) (0.9) (1.0) (0.7) (0.9) (1.0) (0.8) (1.3)

SVM-Sinc 11.3 12.6 10.8 6.6 11.4 13.2 9.3 13.1
(0.9) (1.0) (1.0) (0.6) (0.9) (1.1) (0.8) (1.2)
4.6. Interpolation of heart rate variability signals

4.6.1. Introduction
Heart rate variability (HRV) is a relevant marker of the

autonomic nervous system (ANS) control on the heart. This
marker has been proposed for risk stratification of lethal
arrhythmias after acute myocardial infarction, as well
as for prognosis of sudden death events [30]. When
analyzing the HRV time series, the sequence of time
intervals between two consecutive beats (called RR-
Interval time series) is often used, which is by nature
sampled at unevenly spaced time instants. Advanced
methods for spectral analysis have shown that the HRV
signal contains well defined oscillations that account for
different physiological information. The spectrum of the
HRV could be divided into three bands: very low frequency
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Fig. 7. Spectra of the band-limited signals used for comparing the algorithms.
(VLF) band, between 0 and 0.03 Hz; low frequency band
(LF), between 0.03 and 0.15 Hz; and high frequency band
(HF), between 0.15 and 0.4 Hz. LF and HF bands have been
shown to convey information about the ANS control on
the heart rhythm, representing the balance between the
sympathetic and parasympathetic contributions. Spectral
based methods, such as Fourier Transform or Auto-regressive
Modeling, require the RR-interval time series to be resampled
into a uniform sampling grid.

The analysis of the HRV is often performed on 24 h
Holter recordings, and a common procedure is to divide
the RR-Intervals time series into 5 min segments, in order
to study the evolution of the spectral components along
time. Classic techniques for computing the spectrum of
HRV signals aim to obtain a good estimate of LF and HF
components, but due to the nonuniform sampling and the
noisy nature of the measurements, estimating the HRV
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A diversity of spectral profiles has been used for this set of experiments.
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spectrum is a very hard problem, specially in LF and HF
ranges. In this experiment, we applied the SVM algorithms
for interpolating two HRV signals with this purpose.

4.6.2. Methodology
A 24 h Holter recording from a patient with Congestive

Heart Failure (labeled with a D) and another one from a
healthy patient (labeled with an H) have been used for this
experiment. These recordings were divided into 5-min
segments, and two preprocessing steps were done: (1)
discarding the segments with more than a 10% of invalid
measurements, usually due to low signal amplitude or
ectopic origin of the beat; (2) applying a detrending
algorithm to subtract the mean value and the constant
trend of each segment, which introduces distortion in the
VLF region. Two algorithms were compared: SVM-Corr and
SVM-RBF. Both algorithms were used to interpolate each
segment, by using the RR-intervals in each segment as the
training samples, and interpolating the signal over a uni-
form grid of 500 ms.

The autocorrelation kernel for each patient was esti-
mated as follows: (1) a set of segments (around 20) with
low noise and high power in the LF and HF regions were
previously selected; (2) an estimate of the autocorrelation
of each of these segments was computed by using the
method described in Section 3, over a fine grid with a step
of 5 ms; and (3) a mean autocorrelation was calculated
from this set of estimates, in order to reduce the noise
level. A subjective evaluation based on the spectrograms
and some examples have been used to compare them.

4.6.3. Results
The autocorrelation kernels and their spectra for both

patients D and H are shown in Fig. 8. Although they are
still noisy, note that in patient D only one peak is present
(probably due to the disease) and both peaks LF and HF
are present in patient H. Using the SVM-RBF and
the SVM-Corr with these kernels we interpolated each
Fig. 8. Autocorrelation kernels in time and frequen
segment. The main effect was that SVM-Corr was able to
filter the noise in order to highlight the LF and HF peaks
better than the RBF algorithm, specially where the den-
sity of noise was very high in frequency bands out of the
regions of interest, as can be seen in the examples for
both patient shown in Fig. 9(a) for patient D and Fig. 9(b)
for patient H. For this last one, two details for a region of
interest and for a region with noise are shown in lower
plots. In the three examples it can be checked that the
SVM-Corr was able to reduce the noise level better than
the RBF algorithm.

Fig. 10 shows the spectrograms of the original and
interpolated signals. For both patients, LF and HF peaks
were clearer with the SVM-Corr than with the SVM-RBF.
A short period of the original and estimated signals is
shown in Fig. 11, in which two peaks can be identified
which correspond to non-ventricular beats or bad mea-
surements. Note that the SVM-Corr algorithm is able to
filter this misleading measurements much better than
SVM-RBF

5. Discussion and conclusions

This paper presented an SVM framework for nonuni-
form interpolation based on spectrally adapted Mercer
kernels. We first provided a spectral interpretation of the
classical Yen interpolator, the Wiener filter, and the SVM
interpolation, which motivated us to analyze spectrally
adapted kernels for the SVM algorithm. Among them, the
actual and estimated kernels can be computed without a
significant increase in complexity, though the actual auto-
correlation can be determined in advance only in some
specific cases (as in the Wiener filter case).

We carried out several experiments in which the
spectrally adapted kernels were compared with low-pass
kernels and with other techniques. The results showed
that the SVM with the autocorrelation kernels outper-
formed the other methods regardless the spectrum of the
cy for the HRV segments of patients D and H.



Fig. 9. Examples of HRV segments of patients D (a) and H (b). Two details of the HRV spectrum for patient H are shown in the lower plots.

Fig. 10. Spectrograms for the original (upper plot) and reconstructed signals, for patients D (a) and H (b). Note that noise in intermediate frequencies
(0.2–0.25 Hz) is lower in the spectrogram filtered with the SVM-Corr method.
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observed signal. Also, we also tested the algorithms for
several degrees of sampling nonuniformity, for different
amount of samples, and for non-Gaussian noise, again con-
cluding that the SVM with the autocorrelation kernels
were the most robust method. Finally, we tested the pro-
posed algorithm in a real-life problem, which is the inter-
polation of HRV signals. In this case, the filtering process
carried out with the autocorrelation kernel allowed to
attenuate the noise level while enhancing the signal power
in the frequency bands of interest.

The proposed method can be especially useful when
the signal bandwidth is not known. Also, SVM-based
algorithms have shown to provide high performance when
the number of available samples is low, which is usual in
many interpolation scenarios. With respect to the adjust-
ment of the free parameters, it should be noted that, from
a Statistical Learning Theory point of view, there is a
training stage in which the signal model is built, but free
parameters should be checked to be adequate in a valida-
tion set given by a different realization. There is evidence
in the literature that SVM interpolation algorithms can be
approximately adjusted with free parameters in advance
(see [17,25]). Note that the use of autocorrelation kernel
avoids tuning the kernel parameters.

In summary, the good properties of SVM algorithms for
nonuniform interpolation can be readily improved when a
spectrally adapted kernel is used.
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