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Abstract

Heart Rate Turbulence (HRT) is a powerful risk strati-
fication criterion in patients with cardiac disorders. Sev-
eral physiological factors affect HRT, e.g., previous car-
diac cycle (CC), coupling interval (CI), and compensatory
pause (CP). However, classical HRT measurements often
use an average of the available individual tachograms that
might blur relevant physiological relationships. We hy-
pothesized that filtering individual tachograms, by using
robust signal processing techniques, would allow to com-
pute local HRT measurements and to relate them with their
local physiological conditions. In this paper, a denoising
procedure based in support vector machine (SVM) estima-
tion was used. HRT indices, Turbulence Slope (TS) and
Tubulence Onset (TO), were computed in filtered individ-
ual tachograms by using 24-h Holter recordings from Con-
gestive Heart Failure (CHF) patients. The relationship be-
tween local TS and TO parameters and their physiological
conditions (CC, CI and CP) was quantified by linear re-
gression. SVM filtering procedure might allow taking into
account the local physiological conditions, which modu-
late the HRT response, and give a way to quantify this
modulation. This approach could complete the current
HRT assessment methods, and yield a clearer physiolog-
ical interpretation of the HRT parameters.

1. Introduction

Heart Rate Turbulence (HRT) is the physiological re-
sponse to a spontaneous ventricular premature complex
(VPC). In normal subjects, it consists of an initial accel-
eration and its subsequent deceleration of the sinus heart
rate. It has been shown to be a powerful risk stratifi-
cation predictor in patients with high-risk of cardiac dis-
ease [1–3]. Assessment of the HRT is often performed by
using the so-called VPC-tachogram, which is constructed
by averaging the RR-intervals sequences surrounding iso-
lated VPCs, thit is, local VPC tachograms. The aim of this

averaging procedure is to reduce the noise that masks the
HRT pattern in isolated VPCs tachograms.

The HRT is mostly assessed from two parameters,
namely, the Turbulence Onset (TO) and the Turbulence
Slope (TS). The former represents the amount of sinus
acceleration following a VPC, and it is defined as the per-
centage difference between the heart rate immediately fol-
lowing the VPC and the heart rate immediately preceding
the VPC. The later represents the rate of sinus deceleration
that follows sinus acceleration, and it is defined as the max-
imum positive regression slope assessed over any 5 con-
secutive sinus rhythm RR-intervals within the first 15 sinus
rhythm RR-intervals after the VPC [2]. In normal subjects,
the initial sinus acceleration following the VPC is charac-
terized by negative values ofTO parameter, whereas the
subsequent sinus deceleration is characterized by positive
values ofTS parameter.

The influence of several physiological factors on the
HRT has been well documented [2]. The heart rate mod-
ulates the strength of the HRT response, thus, HRT is re-
duced at high heart rate. There exist approaches to correct
HRT indexes for heart rate, or to propose new ones [3, 4].
VPC prematurity modulates the HRT response, and hence,
in agreement with the baroreflex source of HRT, the more
premature the VPC, the stronger the HRT response.

The usual procedure to assess the HRT implies averag-
ing all available isolated VPC tachograms to construct the
VPC-tachogram, used to computeTS andTO. However,
this procedure might mask the influence of different phys-
iological factors, since it considers all HRT responses to
isolated VPC as equivalents, when they may have differ-
ent physiological conditions, leading to different HRT pat-
terns, and therefore differentTS andTO values.

In this work, we propose to efficiently filter the noise in
each isolated VPC tachograms to obtain reliable localTS

andTO parameters, this is, computed from the denoised
isolated VPC tachograms. This approach will allow us to
study the relationship between the HRT characterization
parameters and the underlying physiological conditions in
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Figure 1. HRT denoising using SVM filtering method, with
and without mirrorizing the edges.

which the VPC occurs. We use a database with 24-Holter
recordings from Congestive Heart Failure (CHF) patients.
We propose to use a filtering method based on support vec-
tor machine (SVM) regression, which is a robust denoising
method especially suitable in problems with few samples,
as in isolated VPC tachograms where only 20 samples are
available [5].

The structure of the paper is as follows. In Section 2,
the method to assess the relationship between HRT and
the physiologica variables is presented, as well as the data
used in the work, and in Section 3 the results are reported.
Finally, in Section 4, conclusions are summarized.

2. Methods and Data

2.1. Relationship between HRT and Physi-
ological Variables

HRT represents a biphasic response of sinus rhythm to a
single VPC. The turbulence signal consists of a fast initial
acceleration, followed by an oscillation in RR intervals,
which usually lasts no longer than about 15-20 beats. The
HRT pattern is influenced by a number of physiological
factors, and so are the parameters used to assess this pat-
tern, i.e.TS andTO.

In order to quantify the relationship between HRT re-
sponse and some of the local physiological variables that
modulate it, we obtained theTS parameter in each indi-
vidual filtered VPC tachogram for each patient. Then, for
those patients with 4 or more individual tachograms, we
computed the Pearson’s correlation coefficient,r, between
TS and the following physiological factors: previous car-
diac cycle,CC, coupling interval,CI, and compensatory
pause,CP . Wheneverr >= 0.5, the slope of the regres-
sion line was computed to characterize how these three lo-

cal variables modulate the HRT as assessed by theTS.

2.2. SVM Filtering Method

The HRT signal comprises no more than 15-20 beats,
so it is an extremely short signal duration for conventional
denoising or filtering techniques. The signal model con-
sidered represents the RR intervals in the local tachogram
under study, denoted by{xn, n = 1, . . . , 20}, as com-
posed by two contributions: one given by the actual HRT
response to be estimated, given by{sn, n = 1, . . . , 20},
and the other given by noise contributions from different
sources, denoted by{en, n = 1, . . . , 20}, which is the part
to be filtered out. The HRT signal model is then:

xn = sn + en, n = 1, . . . , 20 (1)

The filtering method used in this paper is based on
a SVM modeling approach, previously developed in [5].
The SVM regressor can be seen as a nonparametric pro-
cedure, in the sense that it does not rely on any specified
form of the HRT. Also, we propose to consider theε-Huber
cost [6], which represents a cost function that can adapt it-
self to the noise distribution. Due to the short length of the
signal, nonparametric bootstrap resampling is used for free
parameter tuning. The SVM model for HRT denoising can
be described as follows. The nonlinear regression model is
given by

xn = sn + en = 〈w, φ(n)〉+ b + en (2)

whereφ(n) is a nonlinear application ofn to a possi-
bly high-dimensional (sayP -dimensional) feature space
F, where a linear approximation is built by the dot product
with vectorw ∈ F. This model can be seen as a nonlinear
interpolation. Following the conventional SVM method-
ology, a regularized cost function of the residuals is to be
minimized. In [6], the following robust cost function of the
residuals was proposed,

L(en) =











0, |en| ≤ ε
1
2δ (|en| − ε)2, ε ≤ |en| ≤ eC

C(|en| − ε)− 1
2δC

2, |en| ≥ eC

(3)

whereeC = ε + δC; ε is the insensitive parameter; and
δ andC control the trade-off between the regularization
and the losses. Theε-insensitive zone ignores errors lower
than ε; the quadratic cost zone uses theL2-norm of er-
rors, which is appropriate for Gaussian noise; and the lin-
ear cost zone controls the effect of outliers. The SVM co-
efficients are estimated by minimizing the previous loss
function regularized with the squared norm of model coef-
ficients,
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with respect towp, {ξ
(⋆)
n } (notation for both{ξn} and

{ξ⋆n}), andb, and constrained to

xn − 〈w, φ(n)〉 − b ≤ ε+ ξn (5)

−xn + 〈w, φ(n)〉+ b ≤ ε+ ξ⋆n (6)

ξn, ξ
⋆
n ≥ 0 (7)

for n = 1, · · · , 20; {ξ(⋆)n } areslack variablesor losses,
which are introduced to handle the residuals according to
the robust cost function; andI1, I2 are the sets of samples
for which losses have a quadratic or a linear cost.

By including linear constraints (5)-(7) into (4), the
primal-dual functional (or Lagrange functional) is ob-
tained:
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(8)

constrained toα(⋆)
n , β

(⋆)
n , ξ

(⋆)
n ≥ 0. By making zero the

gradient ofLPD with respect to the primal variables [6],
we obtainα(⋆)

n = 1
δ
ξ
(⋆)
n (n ∈ I1), α

(⋆)
n = C − β

(⋆)
n (n ∈

I2), to be fulfilled, and if these constrains are included into
(8), primal variables can be removed. The correlation ma-
trix of input space vectors can be identified, and denoted
asR(t, u) ≡ 〈φ(t), φ(u)〉. The dual problem can now be
obtained and expressed in matrix form, and it corresponds
to the maximization of

−
1

2
(α−α⋆)T [R+ δI] (α−α⋆)+(α−α⋆)Ty−ε1T (α+α⋆)

(9)
constrained toC ≥ α

(⋆)
n ≥ 0, where α(⋆) =

[α
(⋆)
1 , · · · , α

(⋆)
20 ]

T ; x = [x1, x2, . . . , x20]
T ; and1 denotes

a column vector of ones. After obtaining Lagrange mul-
tipliers α(⋆), the time series model for a sample at time
instantm is:

ŝm =

20
∑

n=1

(αn − α⋆
n) 〈φ(n), φ(m)〉 + b (10)

which is a weighted function of the nonlinearly observed
times in the feature space. Note that only a reduced subset
of the Lagrange multipliers is nonzero, which are called
thesupport vectors, and the HRT solution is built in terms
of them.

In this approach we used aGaussianMercer’s kernel,
given by

KG(t, u) = exp

(

−
(t− u)2

2σ2

)

(11)

Slope (ms
2/RR− Int) N. of patients r ≥ 0.5

TS vs CC 0.05 4 out of 8
TS vs CI 0.30 2 out of 8
TS vs CP 0.04 3 out of 8

Table 1. Mean slopes of regression lines betweenTS

and its local physiological variables (CC, CI, andCP )
for those patients with a Pearson’s correlation coeffi-
cient greater than0.5, and 4 or more individual VPC
tachograms available, 8 out of 60.

whereσ is the width of the Gaussian kernel, and it must be
properly chosen. For a fixed value ofσ, it is fulfilled that
KG(t, u) = 〈φ(t), φ(u)〉 in some unknown feature space.
Thus, the final solution of SVM for HRT denoising can be
expressed simply as

x̂m =

20
∑

n=1

(αn − α⋆
n)KG(n,m) + b (12)

which is just a linear combination of shifted Gaussian ker-
nels of a given width.

An issue that has to be taken into account is related to
boundary conditions, it is mandatory to minimize errors
propagations due to finite observation lengths. These er-
rors are generally reflected in the HRT assessment as an
overestimation in the TS parameter. To minimize this im-
pact, we obtained good results by mirrorizing the extrema
close to the edges. Figure 1 shows an example of HRT de-
noising using SVM approach, both with and without mir-
rorizing the edges.

2.3. Congestive Heart Failure Database

A database of 60 Holter recordings, from CHF patients,
was assembled in the Arrhythmia Unit of Hospital Univer-
sitario Virgen de la Arrixaca (Spain). RR-interval series
were previously filtered to identify reliable isolate VPC
tachograms according to the criteria proposed in [2].

3. Results

Table 1 shows the mean slopes values of the regres-
sion lines fitted by least squares betweenTS parameter
and physiological variablesCC, CI, andCP , for those
patients with a Pearson’s correlation coefficient greater
than 0.5. Only 8 patients, out of the 60 that com-
prised the database, had available 4 or more isolated VPC
tachograms.

Regarding the relationship betweenTS andCC, the
mean slope was0.05, meaning that a change in 50ms in
theCC would lead to a change of2.5 units inTS param-
eter. Regarding the relationship betweenTS andCI, the
mean slope was 0.3, meaning that a change in 50ms in
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Figure 2. Relationship between theTS parameter and the
CC physiological variable characterized by the regression
line fitted to the data.

theCI would lead to a change of 15 units inTS param-
eter. Finally, regarding the relationship betweenTS and
CP , the mean slope was0.04, meaning that a change of
50ms in theCP would lead to a change of 2 units inTS
parameter.

Figure 2 shows a scatter plot representing the relation-
ship between theTS parameter and theCC physiological
variable as characterized by the slope of regression line.

4. Conclusions

We proposed a method to characterize the relationship
between the HRT and the local physiological variables re-
sponsible for the modulation of the HRT response, using
filtered individual VPC tachograms instead of an average
VPC tachogram as the classical method.

It is well documented in the literature that the HRT
response is modulated by different physiological factors,
among them are the previous cardiac cycle, the coupling
interval and the compensatory pauseCP . The framework
presented in this paper to assess the HRT allows to perform
quantitative analysis to characterize the influence of these
physiological variables on the HRT response in isolated
VPC tachograms as quantified byTS parameter.

The Pearson’s correlation coefficient was used to estab-
lish a significant relationship between local physiological
variables andTS parameter, whereas the slope of the re-
gression line was used to quantify this relationship.

The physiological variables studied had a significant in-
fluence on the HRT in half of the available patients. In
those cases, the coupling interval had a major role modu-
lating the HRT response as quantified by theTS parameter.

The study had some limitations due to the lack of pa-
tients with enough isolated VPC tachograms available, and

the lack of a gold standard for the relationship between the
local physiological variables studied and the HRT.
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