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Abstract

Since alternans phenomena in the cardiac repolariza-
tion have been shown to be related to arrhythmogenesis,
a number of sophisticated methods have been proposed
to detect and estimate microvolt T-Wave Alternans (TWA).
However, their robustness with respect to the inclusion
and tuning of the processing stages has not always been
analyzed and quantified in detail. We propose a proce-
dure based on bootstrap techniques to study the effect of
some relevant preprocessing stages in a TWA estimation
system. A controled data base was obtained by adding
noise and TWA to control ECG signals. Several experi-
ments were performed, each one to evaluate the influence
of one characteristic of a processing stage in the whole
TWA estimation system. For the analysis, different statis-
tics (median, confidence interval width, and power) were
obtained for the TWA amplitude estimation errors. It can
be concluded that interactions among different preprocess-
ing subsystems are complex, not always completely char-
acterized, and small variations can affect significantly to
the overall performance of the detection system.

1. Introduction

T-wave Alternans (TWA) can be defined as a beat-to-
beat consistent fluctuation in the cardiac repolarization
morphology. This phenomena can be observed in the
Electrocardiogram (ECG) under adequate conditions, and
TWA have been shown to be related to cardiac instability
and increased arrhythmogenicity. Clinical studies suggest
that there is a patent relationship between large amplitude
microscopic (microvolt level) TWA and the risk of sudden
cardiac arrest [1], therefore, TWA represents an important
marker of cardiac electrical instability and have potential
for arrhythmic risk stratification [2].

Though a number of methods have been proposed to
detect and estimate the TWA, there is no definite method
available to date, mostly due to the difficulties in the defi-

Figure 1. Processing stages diagram for TWA estimation.

nition of a gold standard for the comparison and validation
of the proposed algorithms [3].

The aim of this work is to analyze in detail the effect of
some relevant signal processing stages in a TWA estima-
tion system. For this purpose, a simple, yet operative, sta-
tistical test for system comparison is proposed, which uses
the nonparametric bootstrap resampling for building confi-
dence intervals. A general processing system for obtaining
time-domain waveform-based decision statistics is used as
demonstration of the capabilities of the method (see Fig 1).

The paper is structured as follows. In the next section,
the processing blocks of the TWA estimation scheme are
described, with emphasis in the preprocessing stages and
in the nonparametric paired bootstrap test. Next, the semi-
synthetic data base used for the experimental work is in-
troduced. Results and benchmarks on the waveform-based
TWA detection system are presented, and conclusions are
briefly scrutinized.

2. Methods

The TWA estimation system considered in this paper is
a waveform-based scheme, which consists of the following
stages (Fig 1).

Preprocessing.The first stage consist of two prepro-
cessing blocks: (1) a BaseLine Cancellation (BLC) block,
to remove baseline fluctuations from the ECG by using a
smoothing filter together with spline interpolation; and (2)
a zero-phase distortion Low Pass Filter (LPF) block, to re-



move the high frequency noise. The convenience of in-
cluding these blocks, as well as their parameters tuning,
are studied in this work.

R-wave Detection. In this stage, a Band Pass Filter
(BPF) [7.5-17.5] Hz is applied to remove those compo-
nents not corresponding to the QRS complexes. Then, an
adaptive threshold is used to isolate the QRS complexes,
and the maximum of each QRS complex is selected as the
R-wave.

T-wave Segmentation.This stage segments each T-wave
by taking the signal segment between the R-wave and the
70% of the precedent cycle length. Then, each segment is
resampled to a rate given by the ratio between the number
of samples of the current segment and those of previous
RR interval. The resampled T-wave is limited to the first
100 samples.

T-wave Alternan Estimation.The first block of this sub-
system generates T wave templates separately for even and
odd beats. The following block estimates the amplitude of
the TWA as the maximum difference (absolute value) be-
tween the odd and the even templates.

In order to study the effect of each subsystem in Fig 1,
we designed an evaluation procedure based on nonpara-
metric bootstrap techniques [4], which are next summa-
rized.

Model Comparison with Paired Bootstrap.Each exper-
iment, which is a system robustness analysis, is here de-
signed as the comparison between two data models, named
Model AandModel B. LabelModelrepresents a whole set
of blocks used for the TWA estimation, together with the
free parameters setting in all of them. A controlled ap-
proach consists on choosing both models being equal, ex-
cept for a single feature that is the one to be benchmarked
(such as including vs excluding a subsystem, or using two
different values for a free parameter). To decide whether
the difference betweenModel AandModel Bis statistically
relevant, we establish a decision statistic and a hypothesis
test.

A suitable statistical hypothesis test is to contrast the
null hypothesis (H0) that Model AandModel Bhave the
same unexplained variance against the alternative hypothe-
sis (H1) that both models have different unexplained vari-
ance. LetXMA andXMB denote the statistics obtained
from the residuals usingModels AandB, respectively, and
define∆X as:

∆X = XMB − XMA (1)

Then, the hypothesis test can be stated as:
{

H0 : ∆X = 0

H1 : ∆X 6= 0
(2)

In order to approximate the probability density func-
tion of XMA, XMB, and subsequently of∆X , we used

a paired bootstrap resampling method withB random re-
samplings. The paired bootstrap considers exactly the
same resampling sets,X∗

MA
(b) andX∗

MB
(b), for comput-

ing ∆X∗(b), for b = 1, ..., B (B = 500 for the experi-
ments in this work). An estimation of the confidence inter-
val for ∆X can be easily obtained from bootstrap resam-
ples∆X∗(b). We state thatH0 is fulfilled if the confidence
interval contains the zero point, otherwiseH1 is accepted
and we can state that the differences between both mod-
els are statistically relevant in terms of that statistic. Note
that using the same resampling for estimatingXMA, XMB

from the residuals of both models, we are controlling the
resampling variability of the∆X estimate, and the vari-
ance of the estimator will be due only to the differences
between both models. This approach is called apaired
bootstrap test. A detailed discussion on bootstrap resam-
pling for statistical hypothesis test can be found in [4].

In this work we compared two models in each experi-
ment, differing just in one design block/parameter of the
preprocessing stage. A set of 50 semi-synthetic signals
were obtained (see Sec.3) for each experiment, and for
each signal, the TWA amplitude was estimated.

The decision statistics chosen for the bootstrap hypoth-
esis test comprise the Median (Med), a central tendency
parameter, the 95% Interval Confidence Width (ICW ), a
dispersion tendency parameter, and the Power (P ), which
comprises both dispersion and central tendency effects.

3. Dataset

Three minutes records were generated by adding noise
and TWA to a set of five control ECG signals from the
MIT-BIH Arrhythmia Database (fs = 360Hz) [5], us-
ing the first lead of the records. The criteria to take the
control ECG signals were described in [6]. Physiolog-
ical noise records from the MIT-BIH Noise Stress Test
Database (fs = 360Hz) [5] were used to obtain nonsta-
tionary ECG signals. Three possible noise sources were
considered, namely, muscular activity artifact, electrode
motion artifact, and baseline wandering, which are pre-
dominant in ‘ma’, ‘em’ and ‘bw’ records, respectively. To
create every semi-synthetic signal, a three minutes seg-
ment of the noise records was added to the control ECG
signal. The noise segment was extracted from a random
position in the whole noise record. Experiments were con-
ducted for the control ECGs with no added extra noise
and for different Signal to Noise Ratio (SNR), namely, 25
dB and 15 dB. Finally, TWA episodes were included by
adding an alternan waveform of35µV amplitude to every
other beat with different patterns: pattern1, with no TWA;
pattern2, pattern3, and pattern4, with alternans in the10%,
50%, and100% of the signal, respectively. The inclusion
pattern was randomly selected for each signal.



Table 1. Experiment 1.∆X of the decision statistics (mean, [95% IC]) for TWA amplitude estimation errors.
Noise SNR Med ICW P

No -0.89,[-1.16,-0.75] -0.78,[-0.81,-0.28] -22.89,[-30.43,-15.50]
bw 25 dB -0.96,[-1.36,-0.44] 0.15, [-1.60,1.76] -13.56,[-34.59,9.93]

15 dB -0.68,[-1.35,0.84] 5.81,[0.12,14.94] 28.25,[-26.69,94.25]
ma 25 dB -0.68,[-1.28,-0.04] -0.19,[-1.75, 0.67] -30.48,[-49.19-13.09]

15 dB -0.08[-1.51,1.85] 11.29, [3.04,25.15] 129.75,[-18.63,295.55]
em 25 dB -0.81,[-1.50,-0.03] 0.16,[-1.70,2.94] -35.62, [-65.54,-9.90]

15 dB 0.28,[-1.58,3.29] 2.17,[-6.25,14.18] 277.74,[79.00,510.43]

4. Results

The experiments in this work were focused in the pre-
procesing blocks (Fig. 1). Tables show the mean and 95%
IC of the difference∆X between the statisticsXMB and
XMA for TWA amplitude estimation errors. Results are
highlighted when the 95% IC of∆X does not overlap
zero. In this case, a negative value in certain statistic means
thatModel BoutperformsModel Afor that statistic, since
its residuals forModel Bare significantly lower than those
for Model A, while a positive value means thatModel A
outperformsModel B.

Experiment 1.The convenience of using the BLC block
was studied, both for no extra noise and for three additive
noise sources (‘bw’,‘ma’,‘em’) with SNR= 15 dB and 25
dB. In all casesModel A included the BLC block, while
Model Bdid not. Tab. 1 shows that, with no extra noise,
and for the three decision statistics, TWA amplitude esti-
mation was significantly better forModel B. This means
that the BLC block can introduce distortion when the in-
put signal is not very noisy. For SNR= 25 dB, some
of the statistics were still significantly better forModel B:
Med for the three kind of noises, andP for ‘ma’ and ‘em’
noises. However, when the noise level was increased to get
SNR= 15 dB, the trend changed and some of the statistics
were significant in favor ofModel A: ICW for ‘bw’ and
‘ma’ noises, andP for ‘em’ noise. We suspect that we did
not find considerable differences between the three kind of
noises when studying the BLC block, because noise was
added to real ECGs which may already have baseline wan-
dering.

Experiment 2.All stages in Fig. 1 were used.Model
A included a median filter in the BLC block, whileModel
B included a mean filter. Tab. 2 shows the results with
additive ‘bw’ noise and SNR= 25 dB. Note that, in terms
of Med andP statistics, the median filter is preferable in
the BLC block.

Table 2. Experiment2.∆X of the decision statistics
(mean, [95% IC]) for TWA amplitude estimation errors.

Decision statistic mean, [95%IC]

Med 1.78,[0.93,2.30]
CIW -0.15,[-0.87,0.50]
P 46.82,[21.77,70.95]

Experiment 3.This experiment analyzed the effect of
the window length in the median filter of the BLC block
(TA for Model AandTB for Model B) when all stages in
Fig. 1 were considered. Tab. 3 shows the results with addi-
tive ‘bw’ noise and SNR= 25 dB. The first window length
explored (500 ms) was selected shorter than the majority
of theRR interval lengths in the control ECGs, and it was
progressively increased until we found a length (1000 ms),
from which further increase did not outperform the results.
We did not find many significant differences in this ex-
periment, maybe because the optimum window length is
related to theRR interval length, which changes with the
time evolution and the particular control ECG.

Experiment 4. The effect of including the LPF block
was evaluated.Model Aincluded all blocks in Fig. 1, while
Model Bdid not include the LPF one. Taking into account
the results from the previous experiments, a median fil-
ter of T = 1000 ms was set in the BLC block. Tab. 4
shows that, without extra noise, statistics were significant
in favor of Model B, which means that the LPF block can
introduce distortion when the signal is not noisy. For SNR
= 25 dB, the test was just significant in favor ofModel A
for ICW statistic with ‘ma’ noise. For SNR= 15 dB, no
significant differences were found for ‘bw’ noise (low fre-
quency noise); for ‘ma’ and ‘em’ noises, the test showed a
significantly better performance forModel A in all statis-
tics except forICW with ‘em’ noise, and this significancy
was stronger for ‘ma’ noise. It seems reasonable that the
LPF affects more to the signals with ‘ma’ noise, since the
power of the ‘em’ noise is concetrated in lower frequencies
than the power of the ‘ma’ noise.

Fig. 2 represents an example of a control ECG with
semi-synthetic TWA episodes: (a) without additive noise;
(b) with additive ‘ma’ noise (SNR= 15 dB). Top panels
show the input signal in Fig 1, medium panels show the
signals after the BLC block, and bottom panels after the
LPF block.

5. Conclusion

Interactions among processing blocks in TWA estima-
tion can be complex and not obvious, and they can affect
significantly the performance. Therefore, further work will
be devoted in this direction.



Table 3. Experiment3.∆X of the decision statistics (mean, [95% IC]) for TWA amplitude estimation errors.
TA (ms);TB (ms) Med ICW P

500 ; 700 -0.80,[-1.86,0.22] 2.18,[0.87,3.41] -24.01,[-53.49,3.89]
500 ; 1000 -1.53,[-2.78,-0.06] 0.87,[-0.08,1.98] -32.85,[-69.12,1.88]
1000 ; 1500 -0.19,[-0.40,0.09] 0.29,[-0.40,1.07] -6.34,[-15.81,3.05]
1000 ; 2000 0.72,[-1.12,2.30] 4.22,[-1.45,6.90] 24.76,[-24.91,79.41]
1000 ; 4000 1.48,[-0.36,3.17] 5.24,[-0.60,7.90] 50.85,[-5.66,113.90]
1000 ; 8000 1.56,[-0.51,3.25] 5.74,[0.45,8.28] 56.36,[-1.80,117.04]

Table 4. Experiment 4.∆X of the decision statistics (mean, [95% IC]) for TWA amplitude estimation errors.
Noise SNR Med ICW P

No -2.35,[-4.39,-1.47] -1.09,[-1.71,-0.23] -57.83,[-95.70,-20.37]
bw 25 dB -1.86,[-3.56,0.40] 0.68,[-3.15,3.49] -30.19[-74.39,21.20]

15 dB -2.31,[-4.48,1.45] 8.52,[-2.54,18.93] 26.71,[-43.80,109.68]
ma 25 dB -2.14,[-8.02,3.21] 12.88,[6.79, 15.94] 15.72,[-115.68,154.68]

15 dB 22.89,[15.20,32.60] 55.26,[23.76,73.99] 2012.2,[1287.6,2835.3]
em 25 dB -2.86,[-6.63,3.65] 12.43,[-3.54,19.01] 15.25,[-112.83,141.92]

15 dB 15.95,[9.86,20.21] -5.38,[-38.69,47.92] 1126.2,[56.9,2092.5]
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Figure 2. Example of a control ECG with synthetic TWA episodes. (a) Without additive noise. (b) With ‘ma’ noise (SNR
= 15 dB). Top panels show the input signal in diagram of Fig 1. Medium panels show the signals after the BLC block.
Bottom panels show the signals after the LPF block.
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